Registration accuracy and surface marking of an electromagnetic navigation system for use in endoscopic sinus surgery

Zabrina Marnel Samarakkody¹, Harvinder Singh Sran², Norasnieda Md Shukri¹, Baharudin Abdullah¹

¹Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, ²Department of Otorhinolaryngology, Hospital Raja Permaisuri Bainun, Malaysia

ABSTRACT

Introduction: Since its introduction, surgical navigation systems have become integrated into surgical practices that include complex nasal endoscopic procedures to avoid serious complication such as injury to the optic nerve, the carotid artery, the dura mater and the brain parenchyma.

Objective: We aimed to determine the accuracy of image guided system (IGS) by using different timing interval of computed tomography scan of paranasal sinus and our experience in performing the surface marking.

Methods: A cross sectional study was done. Subjects were recruited from patients planned for endoscopic sinus surgery with IGS, who met the inclusion and exclusion criteria. The image guided navigation measurements were compared to the actual anatomical measurements of intercanthal distance of both eyes and the tangential line of inverted triangle to the philtrum. The estimated time to register the IGS was recorded. All measurements were done at the same time as the calibration of the IGS.

Results: The mean intercanthal distance measured by IGS was 38.17 mm (SD 3.34) whereas the actual intercanthal distance was 38.17 mm (SD 3.37 mm). The tangential line measured by IGS was 46.62 (SD 3.39) whereas the actual measurement of the tangential line was 46.47mm (SD 3.27). The was no significant difference in both measurements between IGS and actual anatomical measurements (p¬=0.804 and 0.496, respectively).

Conclusions: Even with the different intervals there was not much deviation from the actual anatomical distance. The IGS is accurate and is applicable for use in Asian patients.

Key Words: Electromagnetic navigation system, endoscopic sinus surgery, registration accuracy, surface marking.

INTRODUCTION

The advent of endoscopic sinus surgery in the 1980s has prompted the development of image guided systems (IGS) to assist the surgeon⁵. Surgical navigation systems have become integrated into surgical practices⁶. The use of IGS has markedly improved the field of endoscopic sinus surgery and its complication rate⁷. There is a risk of serious complication due to anatomic proximity of the sinus cavities, the optic nerve, the carotid artery, the dura mater and the brain parenchyma that can be avoided by IGS use⁸,⁹.

The registration is done by which the position of the instrument or tracking pointer in the surgical field is correlated with the computed tomography (CT) images of the patient. The tracking probe is registered with respect to the CT images of the patient⁵. The registration markers or anatomical markers are set by selecting bony prominences that are located directly beneath the skin. However, the interval of CT prior to surgery and efficiency of surface marking have not been well studied. In this study, we aimed to determine the accuracy of navigation system in using different timing interval of CT and our experience in performing the surface marking in Asian patients.

METHODOLOGY

Subjects

This was cross sectional study to evaluate the accuracy in surface registration of patients undergoing endoscopic sinus surgery with image guided navigation system in a tertiary hospital in Malaysia. Subjects were recruited from those scheduled to undergo endoscopic sinus surgery with image guidance system. All measurements were done at the same time for calibration of the machine to the patient’s anatomy. The image guidance system used was Storz NAV1 Electromagnetic system. The inclusion criteria were age 18 years and above and scheduled for endoscopic
sinus surgery. Whereas the following exclusion criteria were used; previous surgery to paranasal sinuses and skull base with facial anomalies, facial trauma, chronic maxillary atelectasis with significant orbital changes, craniofacial abnormality, non-Malaysian and pregnancy. Subjects would be withdrawn if the investigator deemed that it was detrimental or risky for the subjects to continue. All withdrawn subjects would attend the final study visit and withdrawn subjects would be replaced.

Study Procedures

Patient was intubated with the normal surgery requirements with throat pack inserted and the endotracheal tube anchored at the left and the patient’s eyes half exposed (chloramphenicol eye ointment applied). The strap of the IGS headpiece was strapped on the patient and the magnetic receiver fastened onto the operation table. The IGS machine and monitor was then set up with uploading the CT scan in DICOM format into the system. Once uploaded, the machine was calibrated, and the reference points confirmed. After the intercanthal distance and its tangential distance taken and recorded, the surgery began. The intercanthal distance between the right and the left eyes were measured together with the distance from the tangential line of the inverted triangle to the philtrum. A comparison was made between right and left intercanthal distance and measurements different between genders. Day to operation was categorized into two categories: less than 90 days and 90 days or more. The difference between IGS and actual measurement was computed as well for both intercanthal and tangential line.

Statistical analysis

Statistical calculation and evaluation were performed with SPSS software version 22.0. The sample size was calculated using Single Mean Formula and 2-Mean Formula. All data were anonymous and only accessible to the research team members. Data were presented as grouped data and the responders were not identified individually. All measurements were taken 3 times and the average was used in data analysis. When there was discordant opinion, further evaluation of the image was done by the specialists to obtain a mutual consensus. Mann Whitney U test was used to test where there is significant difference in outcome (IGS compared to actual for intercanthal distance and tangential line) between days to operation. Furthermore, Mann Whitney U test was applied again to test the difference in intercanthal distance and tangential line between gender for both measurements (IGS and actual) too. A p value less than 0.05 was considered statistically significant.

RESULTS

A total of 30 patients were recruited from those scheduled to undergo endoscopic sinus surgery with IGS (Table 1). Out of the 30 patients selected, 7 of them were female. The average age amongst the patients selected was 47 years old. The comparison of intercanthal distance and tangential line between IGS and actual measurements is shown in Table 2.

The mean intercanthal distance measured by IGS was 38.17 mm (SD 3.34) whereas the actual intercanthal
distance was 38.17 mm (SD 3.37 mm). The tangential line measured by IGS was 46.62 (SD 3.39) whereas actual measurement of the tangential line was 46.47 mm (SD 3.27). There was no significant difference in both measurements between IGS and actual measurements (p = 0.804 and 0.496, respectively).

Table 1: Characteristics of study population (n=30)

<table>
<thead>
<tr>
<th>Race</th>
<th>Mean (SD)</th>
<th>Range</th>
<th>25th Percentiles</th>
<th>Median</th>
<th>75th Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malay</td>
<td>25 (83.3)</td>
<td>33.66 – 44.92</td>
<td>34.92</td>
<td>37.84</td>
<td>41.33</td>
</tr>
<tr>
<td>Chinese</td>
<td>3 (10.0)</td>
<td>41.36 – 54.32</td>
<td>44.26</td>
<td>45.47</td>
<td>48.76</td>
</tr>
<tr>
<td>Indian</td>
<td>2 (6.7)</td>
<td>35.00 – 44.00</td>
<td>37.00</td>
<td>41.00</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation

Table 2: Comparison of intercanthal distance and tangential line between IGS and actual measurements (n=30).

<table>
<thead>
<tr>
<th>Intercanthal Distance (mm)</th>
<th>Mean (SD)</th>
<th>Median (IQR)</th>
<th>z-statistic</th>
<th>p value(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGS</td>
<td>38.17 (3.34)</td>
<td>37.84 (6.41)</td>
<td>-0.25</td>
<td>0.804</td>
</tr>
<tr>
<td>Actual</td>
<td>38.17 (3.37)</td>
<td>37.00 (6.00)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tangential Line (mm)</td>
<td>46.62 (3.39)</td>
<td>45.47 (4.50)</td>
<td>-6.81</td>
<td>0.496</td>
</tr>
<tr>
<td>Actual</td>
<td>46.47 (3.27)</td>
<td>45.50 (5.00)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SD = Standard deviation; IQR = Interquartile range

\(^1\)Wilcoxon signed ranks test was applied, normality of data distribution was not assumed.

Table 3: Correlation of intercanthal distance between IGS and actual measurements.

<table>
<thead>
<tr>
<th>Variable</th>
<th>r</th>
<th>p value(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercanthal distance: IGS and Actual</td>
<td>0.974</td>
<td><0.001</td>
</tr>
<tr>
<td>Tangential line: IGS and Actual</td>
<td>0.972</td>
<td><0.001</td>
</tr>
</tbody>
</table>

\(^1\)Spearman correlation test was applied.

Table 3 revealed the correlation of intercanthal distance and tangential line between IGS and actual measurement. There was significant, positive and good correlation of intercanthal distance between IGS and actual measurement (r = 0.974; p<0.001). Similarly, there was significant, positive and strong correlation between IGS and actual measurement of tangential line score (r=0.972; p<0.001).

There was no significant difference on the registration time compared to the standard 15 minutes standard registration time (p = 0.156) (Table 4). There was no significant difference in median intercanthal distance and tangential line between days to operation (Table 5). There was no significant difference between gender for intercanthal distance for IGS (p = 0.390) and actual measurements (p = 0.390) and no significant difference for tangential line for IGS (p = 0.390) and actual measurements (p > 0.950) (Table 6).
ACCURACY OF AN ELECTROMAGNETIC NAVIGATION SYSTEM

DISCUSSION

The use of IGS is generally perceived that it is critical to certain cases for verifying the location of vital structure surrounding the paranasal sinus and minimalizing the risk of injury[7, 8]. The localization unit uses preoperative CT or MRI data to provide the surgeon with a real-time 3-D visual localization of the surgical instruments relative to the patient’s anatomy during the image guided procedure[8].

IGS does not display anatomical changes that occur during surgery because it relies on computed tomography (CT) scans obtained preoperatively[9]. Image guidance systems were designed to identify surgical instruments, calculate the position of instrument tip in relation to the patient, and project the instrument location on the previously obtained imaging study[10].

Registration accuracy was checked visually for every patient by repeatedly pin-pointing the anatomical landmarks. Registration errors can be caused by shifting, or unfavourable spatial distribution of the markers. Calibration using anatomic landmarks is not precise enough and could lead to 2 to 5 mm divergence[11]. A drift in the accuracy of the system may develop during the procedure and frequent corroboration with known clinical landmarks is advised[12].

While stereotaxic frames and bone implanted markers are rigidly attached to bone, skin markers and markers implanted into soft tissue can move due to skin elasticity or soft tissue deformation[13]. Virtual views have been designed to match a real model in terms of spatial cues and anatomical relationships[14]. The problem of finding corresponding landmarks in 3D and 2D is avoided by curve-to-curve and surface-to-curve registration[13].

Calibration systems involving surface scanning of the patient’s face need to consider the soft tissue malleability. Hydration and tension differences in facial tissue between image acquisition when patient is awake and surgery under general anaesthesia can cause significant difference (up to 2mm) in the position points[15, 16, 17]. Three anatomical markers are set by selecting bony prominences that are located beneath the skin and a triangular field is created by selecting this reference point. Two of the reference points are the lateral canthi of the right and left eye and the third point is the philtrum[2].

The dominant characteristics of the Asian face were a wider intercanthal distance in relation to a shorter palpebral fissure, a much wider soft nose within wide facial contours, a smaller mouth width, and a lower face smaller than the forehead height, when compared to Caucasian face[18].

Previous studies by Chang et al, regarding the three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic manner.
Although facial analysis and proportions are well discussed in Caucasians and Africans, only a limited number of studies exist for Asians\cite{21}. Amongst landmarks were the intercanthal distance and nasal length. Most studies concluded that the distance in Asians are wider than Caucasians with the mean intercanthal difference of 5.1 and p value of < 0.001 and nasal length mean difference of 1.2 and p value of 0.01\cite{21}. Briellmann et al, also noted the difference between Asians and Caucasian faces, noting the most obvious difference between the two races are the eye (intercanthal distance) and the length of nose by pointing out the point of fixations of gaze by 24 observers\cite{22, 23}. Rhee mentioned the percentage ratio of facial width to facial height was 74.4 % for Caucasians and 72.0 % for Asians which showed that the Asian face is wider\cite{24}. In terms of photogrammetric measurements, the intercanthal distance in Caucasian is 31.4 mm compared to 35.7 mm in Asians and the nose height is 45.3 mm in Caucasian compared to 49.3 mm in Asians\cite{24}.

In a review article by Gao et al, East Asian have wider intercanthal distance and nose width compared to Caucasians (Italians)\cite{25}. In another article by Le, they have noted that intercanthal width is wider in Chinese (mean 37.1 mm) and Vietnamese (mean 36.7 mm) than in North Americans (mean 32.3 mm) but smaller in Thais (mean 36.6 mm). As for nose length the Chinese have a mean of 52.6 mm, the Thais have 50.5 mm and the Vietnamese have a mean of 51.3 mm compared to the North Americans 52.1 mm\cite{26}. In our patients, we have noticed that the IGS is accurate for Asians even though using the Caucasian template. The measurements are almost the same between the actual measurements and the IGS measurements.

The time lapse between the CT done prior to the surgery is the average of 87 days. The longest time lapse between surgery and the preoperative CT scan is 242 days and the shortest duration is 3 days. However, the measurements of the patients taken during the time of surgery and when it is compared in the IGS has proved that even after some time, the IGS is still accurate since we use the bony prominences as reference points. Thus, the bone is not influenced by edema and tissue fluctuations. There was no study done to determine any specific duration of preoperative CT should be used for IGS. However, all of them suggested preoperative CT scans should be obtained and used in the navigation system.

The duration of time taken for image registration of each individual patient was on the average about 15 minutes. This complies to the norm. Elishar et al with the optical navigation system initially began at 30 minutes duration but as their staff grew more confident, the registration time has dropped to 15 minutes\cite{13}. Koelle et. al had taken 10 minutes with the magnetic navigation system\cite{13}. and Benoit et al found no correlation between surgeon and setup time\cite{27}. Garcia also stated that the setup up time took not more than 5 minutes to the preparation time of the surgery in the electromagnetic IGS setup. Metson et al mentioned a range between 10-20 minutes needed for the setup of the electromagnetic system\cite{5}. Kingdom et al also stated that their group took 15 minutes as well\cite{5}.

In our study, we did not find any difference between males and females. Thus, in Asian faces, there are no difference in terms of intercanthal distance and the tangential line between it. However, in Nigeria, it is found that intercanthal distance in males are wider than in females\cite{20, 27, 30}. But, in India, it was noted that the intercanthal distance was less in males compared to females\cite{31}. As previously mentioned, the exact the interval of CT prior to surgery and efficiency of surface marking have not been well studied. Most studies mentioned preoperative CT scan was obtained but no mention of the interval between scan and the surgery\cite{1, 2, 13, 15, 29, 30}.

CONCLUSION

The IGS is indeed a valuable tool in endoscopic sinus surgery. In this study, we have determined that the navigation system is accurate even with the different timing interval of CT. We have found that even with the different intervals there was not much deviation from the actual anatomical distance. We also found that the IGS is accurate and is applicable for the use for Asian features.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

